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Abbreviations
The following abbreviations may be used without definition in the book.

AA		  amino acid
ACTH		  adrenocorticotropin
ADF		  acid detergent fiber
ADG		  average daily gain
ADL		  acid detergent lignin
ADIN		  acid detergent insoluble nitrogen
AI		  artificial insemination
BCS		  body condition score
BHB		  β-hydroxybutyrate
BLUP		  best linear unbiased predictor
BSA		  bovine serum albumin
bST		  bovine somatotropin
BTA		  Bos taurus autosome
BUN		  blood urea nitrogen
BW		  body weight
CI		  confidence interval
CLA		  conjugated linoleic acid
CN		  casein
CNS		  coagulase-negative staphylococci
CoA		  coenzyme A
CP		  crude protein
CV		  coefficient(s) of variation
DCAD		  dietary cation-anion difference
DHI(A)		 Dairy Herd Improvement (Association)
DIM		  days in milk
DM		  dry matter
DMI		  dry matter intake
DNA		  deoxyribonucleic acid
EAA		  essential amino acid
EBV		  estimated breeding value
ECM		  energy-corrected milk
ELISA		  enzyme-linked immunosorbent assay
ETA		  estimated transmitting ability
FAME		  fatty acid methyl esters
FCM		  fat-corrected milk
FSH		  follicle-stimulating hormone
GnRH		  gonadotropin-releasing hormone
h2		  heritability
HTST		  high temperature, short time
IFN		  interferon
Ig		  immunoglobulin
IGF		  insulin-like growth factor
IL		  interleukin
IMI		  intramammary infection
LA		  α-lactalbumin
LG		  β-lactoglobulin
LH		  luteinizing hormone
LPS		  lipopolysaccharide
LSD		  least significant difference
LSM		  least squares means
mAb		  monoclonal antibody

ME		  metabolizable energy
MIC		  minimum inhibitory concentration
MP		  metabolizable protein
mRNA		  messenger ribonucleic acid
MUFA		  monounsaturated fatty acids
MUN		  milk urea nitrogen
NAN		  nonammonia nitrogen
NDF		  neutral detergent fiber
NDIN		  neutral detergent insoluble N
NEAA		  nonessential amino acid
NEG		  net energy for gain
NEL		  net energy for lactation
NEM		  net energy for maintenance
NFC		  nonfiber carbohydrates
NPN		  nonprotein nitrogen
NRC		  National Research Council
NSC		  nonstructural carbohydrates
OM		  organic matter
PCR		  polymerase chain reaction
PGF2α		  prostaglandin F2α
PMNL		  polymorphonuclear leukocyte
PTA		  predicted transmitting ability
PUFA		  polyunsaturated fatty acids
QTL		  quantitative trait loci
r		  correlation coefficient
R2		  coefficient of determination
RDP		  rumen-degradable protein
REML		  restricted maximum likelihood
RIA		  radioimmunoassay
RNA		  ribonucleic acid
RUP		  rumen-undegradable protein
SARA		  subacute ruminal acidosis
SCC		  somatic cell count
SCS		  somatic cell score
SD		  standard deviation
SDS		  sodium dodecyl sulfate
SE		  standard error
SEM		  standard error of the mean
SFA		  saturated fatty acids
SNP		  single nucleotide polymorphism
SPC		  standard plate count
TDN		  total digestible nutrients
TMR		  total mixed ration
TS		  total solids
UF		  ultrafiltration, ultrafiltered
UFA		  unsaturated fatty acids
UHT		  ultra-high temperature
USDA		  United States Department of Agriculture
UV		  ultraviolet
VFA		  volatile fatty acids
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Cover images

Top left: Example of immunofluorescent staining in prepubertal bovine mammary tissue. The cross section of the developing duct shows 
the expression of p63 (red), which indicates myoepithelial nuclei, estrogen receptor (green), about 50% of the epithelial cells, and Ki67 
(yellow), a marker for cell proliferation; DAPI staining (blue) is a general DNA stain that labels all cell nuclei.
[Chapter 9-59: Mammary development in calves and heifers; Figure 4D]

Top center: The daily trail to (and from) milking.
[Chapter 10-67: Mastitis control in pasture and seasonal systems; Figure 3]

Top right: Cow brushes are clearly a valued resource as they are used voluntarily by cows and are required by some voluntary assurance 
programs. Photo credit: DeLaval, Tumba, Sweden.
[Chapter 11-71: Assuring and verifying dairy cattle welfare; Figure 2]

Bottom left: The bedding material commonly recommended for controlling environmental mastitis is washed sand.
[Chapter 10-65: Practical approaches to environmental mastitis control; Figure 3]

Bottom center: Life cycle of a liver fluke. 
[Chapter 12-81: Parasite control in large dairy herds; Figure 2]

Bottom right: Studies have shown that positive handling is correlated with cows having low fear responses to people and higher milk 
production. Some animal welfare standards now include a standardized test of avoidance distance to people as a way of screening for ap-
propriate handling and good human–animal relationships on farms. Photo credit: University of British Columbia (UBC) Animal Welfare 
Program.
[Chapter 11-71: Assuring and verifying dairy cattle welfare; Figure 3]
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SUMMARY

Genetic selection has been a very effective tool for achieving lasting gains in animal production and efficiency. 
Prediction of the genetic merit of animals for a variety of traits occurs through the integration and analysis of 
multiple types of data, including genotypes that describe variation in DNA sequences among animals. These data 
are gathered, maintained, and analyzed through the efforts of multiple organizations working together in the 
dairy industry. The success of this genetic evaluation program is evidenced by improvements in the genetic merit 
and actual performance of cows for milk, fat, and protein yields. Although these production traits will continue 
to be important to US dairies in the future, interest in the ability to select animals for improved efficiency of 
production has increased in recent years. Estimation of genetic merit for feed intake, feed efficiency traits, or both 
will likely be added to US genetic evaluation programs in the future.

INTRODUCTION

The goal of dairy cattle breeding is to increase pro-
ductivity and efficiency by means of genetic selection. 
This is possible because related animals share some of 
their DNA, and we can use statistical models to predict 
the genetic merit of animals based on the performance 
of their relatives. Historically, production goals focused 
on the amount of milk, butterfat, and protein produced. 
Although these traits remain an important part of most 
selection strategies, other traits, such as longevity and 
fertility, have increased in importance. A substantial 
amount of research now focuses on production effi-
ciency, often calculated as a function of individual feed 
intake or greenhouse gas emissions. Interest in selection 
for production efficiency, rather than total production 
of milk, fat and protein, is increasing because of greater 
competition for feed and water, as well as growing 
demand for animal protein from the growing global 
middle class.

The goals of this chapter are to describe how genetic 
and genomic selection programs work, and to demon-
strate how these tools are being used to produce dairy 
cattle that are efficient producers of food for human 
diets.

GENETIC SELECTION AND GENOMIC PREDICTION

Genetic gains differ from those due to improvements 
in an animal’s environment (e.g., housing or feeding) 
because they are cumulative and can be transmitted 
from parents to offspring. Selection programs are de-
signed to identify the animals in a population with the 
highest genetic merit. The animals with highest genetic 
merit may then be selected as the parents of the next 
generation, resulting in genetic improvement of the 
population.

Genes Versus Environment

An animal’s performance for a trait of interest (its 
phenotype) is influenced by the genes it inherited from 
its parents, as well as the environment in which it is 
placed. Records from all animals in a population can 
be used to estimate the amount of variation in the 
trait, and that variation can be broken down into por-
tions due to genetics and to the environment (Falconer 
and MacKay, 1996). Traits that are influenced mostly 
by environment are said to have low heritabilities, 
and traits with large genetic components are said to 
have high heritabilities. In general, traits with higher 
heritabilities respond more rapidly to genetic selection 
because genetic merit for highly heritable traits can be 
estimated more accurately than that for lowly heritable 
traits. Table 1 shows heritabilities for traits included in 
the lifetime net merit economic index (NM$), which 
represents a broad array of phenotypes. The traits in 
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332 GENETIC SELECTION PROGRAMS

NM$ have heritabilities ranging from 1% for heifer 
conception rate to 40% for body size composite. Gener-
ally, traits associated with physical shape and size have 
high heritabilities (≥40%), traits related to milk and 
solids yield have moderate heritabilities (15 to 30%), 
and traits associated with health and fertility have low 
heritabilities (≤10%). If there is no variation in a trait 
attributable to genetics, such as for sire conception 
rate, then population performance cannot be improved 
using genetic selection.

How Does Genetic Selection Work?

Genetic selection works by improving the average 
genetic merit of animals in the population each genera-
tion. In dairy cattle, this is accomplished by selecting 
bulls that have high genetic merit for traits of interest 
as sires of the next generation of cows. The breeder’s 
equation, shown in Equation [1], describes how different 
aspects of traits under selection affect the rate of ge-
netic gain in the population (see, e.g., Bourdon, 1999):

∆G
reliability selection intensity genetic variance

genyear =
× ×

eeration interval
.

� [1]

In this equation, ΔGyear is the annual rate of genetic 
change in the population, reliability is a measure of 
the precision with which genetic merit is estimated, 
selection intensity is a measure of how selective we 
are when choosing the parents of the next generation, 
genetic variance is the variation among animals in the 
population that is attributable to genetic differences, 

and generation interval is the average age of parents 
when their offspring are born. Reliability and genetic 
variance differ from trait to trait, whereas selection 
intensity and generation interval are generally proper-
ties of a population and do not depend directly on the 
trait under selection. The use of genomic information 
allows us to increase the rate of gain by computing 
high-reliability genetic evaluations early in an animal’s 
life, affecting both the reliability and the generation 
interval.

Calculation of Breeding Values

For many years, dairy cattle genetic improvement 
programs have been based on the mixed model meth-
odology developed by Henderson (1984). In a simple 
mixed model analysis, the phenotype is modeled as a 
function of fixed (e.g., sex) and random (e.g., genetic) 
effects:

	 y = Xb + Zu + e,	 [2]

where y is a vector of phenotypes; X and Z are matri-
ces that link observations to fixed and random effects; 
b is a vector of values for fixed effects; u is a vector 
of random animal breeding values; and e is a vector 
of residual error effects. This equation describes the 
phenotype measured on an animal as a combination of 
genetic and environmental effects, as well as unknown 
effects that we cannot measure individually (error). 
When these equations are solved, each animal in the 
pedigree receives an estimate of genetic merit known 
as a predicted transmitting ability (PTA), which is the 
estimated animal breeding value from u divided by 2. 
The animal model used for most traits in the United 
States (VanRaden and Wiggans, 1991) is more com-
plex than the example described above, and includes 
sophisticated contemporary groups, herd-by-sire, and 
cow permanent environmental effects.

Genomic Prediction

Genomic prediction occurs when information about 
an animal’s DNA is used along with its performance 
and pedigree data for the estimation of genetic merit. 
Genotypes describe DNA inherited from each parent 
at specific markers known as single nucleotide poly-
morphisms (SNP). Each SNP represents a position in 
the DNA sequence that has only 2 possible variants. 
Genotypes at these SNP can be read in large numbers 
at low cost, and they describe which variant(s) at each 
SNP an animal has inherited. These genotypes provide 
information about an animal’s genetic composition that 

Table 1. The heritability of traits in the lifetime net merit economic 
index, which range from 0.01 (heifer conception rate) to 0.40 (body 
size composite); the emphasis placed on each trait in the index is a 
function of its heritability and economic value1

Trait Heritability

Milk yield 0.20
Fat yield 0.20
Protein yield 0.20
Somatic cell score 0.12
Productive life 0.08
Udder composite 0.27
Feet/legs composite 0.15
Body size composite 0.40
Daughter pregnancy rate 0.04
Heifer conception rate 0.01
Cow conception rate 0.02
Sire calving ease 0.086
Daughter calving ease 0.048
Sire stillbirth 0.030
Daughter stillbirth 0.065
1Data from VanRaden and Cole (2014).
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CHAPTER 5-23: PRODUCTION EFFICIENCY AND GENETIC SELECTION 333

is not influenced by the environment, thus improving 
the accuracy with which genetic merit is estimated.

Genotyping Chips

When the initial sequencing of the bovine genome 
was completed in 2009, an international consortium 
of government, university, and industry cooperators 
worked with Illumina Inc. (San Diego, CA) to develop 
a set of SNP to be included on a genotyping chip for 
cattle. This resulted in a set of 54,001 SNP included 
on the Illumina BovineSNP50 BeadChip, which be-
came publicly available in December 2007. Genotypes 
were pooled from the Beltsville Agriculture Research 
Center (Maryland), University of Missouri (Columbia), 
and University of Alberta (Edmonton, AB, Canada) 
to identify SNP useful for genomic evaluation. Mark-
ers were excluded from genomic evaluation for many 
reasons, such as low call rates (genotypes frequently 
could not be determined), low minor allele frequencies 
(variants occurred too rarely), or high correlations with 
adjacent SNP (markers added little new information). 
In addition to computing genomic breeding values, 
the SNP also are used to identify and correct pedi-
gree errors. As of June 2016, 1,418,194 genotypes from 
21 different chips are included in the National Dairy 
Database, including low-density (6,000 to 9,000 SNP), 
medium-density (30,000 to 60,000 SNP), and high-
density (77,000 to 777,000 SNP) chips. The majority of 
the genotyped animals are young females that do not 

yet have completed lactation records. This represents 
the largest database of genotyped animals in the world, 
but most of the ~9 million cows in the national herd do 
not receive genomic tests.

Genomic PTA

Effects of alternative SNP variants associated with 
traits of interest are estimated using phenotypes, 
pedigrees, and genotypes from a group of animals with 
high-reliability PTA, known as the predictor population. 
Once these SNP effects have been estimated, genomic 
PTA can be computed for animals that have genotypes 
but no available phenotypes. The marker effects must 
be periodically re-estimated, so phenotypes must be 
collected continuously. The final genomic predictions 
combine 3 terms using selection index procedures: (1) 
direct genomic predictions based on the SNP effects; 
(2) parent averages (PA) or PTA computed from geno-
typed ancestors using traditional relationships; and 
(3) traditional PA or PTA computed using pedigree 
and phenotype information. Reliabilities of genomic 
predictions are approximated using the genomic rela-
tion of each animal to the predictor population and 
the reliability of the predictor evaluation. The official 
evaluation for the bull Bacon-Hill Pety Modesty-ET 
(HO84003013654627), the top-ranked bull for lifetime 
net merit in the December 2015 evaluation, is shown in 
Figure 1 as an example of the results from the evalua-
tion system.

Figure 1. December 2015 official bull evaluation for the Holstein sire Bacon-Hill Pety Modesty-ET (HO84003013654627). Source: Council on 
Dairy Cattle Breeding (https://www.uscdcb.com/cgi-bin/general/Qpublic/proc.Q.cgi?qname=getbull&single&id=HO840003013654627).
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THE US DAIRY GENETIC EVALUATION SYSTEM

Input Data

Selection programs make use of many types of infor-
mation about the animals in the population, including 
phenotypes, pedigrees, and genotypes. Phenotypes are 
measurements of individual animal performance, such 
as a test-day milk yield or breeding record. Pedigrees 
describe genetic relationships among animals in the 
population. Genotypes describe the DNA inherited from 
each parent using SNP markers. The information pro-
vided by records can vary considerably. For example, 
a record for a trait with high heritability, such as milk 
yield, provides more information about an animal’s 
genetic potential than a record from a trait with a low 
heritability, such as conception rate. Pedigrees differ in 
their quality (error rate) and completeness, with scien-
tific studies reporting error rates of 15 to 20%. These 
errors introduce bias into genetic evaluations and can 
reduce rates of genetic gain. Genotypes can provide 
varying amounts of information based on the number 
of markers on the chip, but this can be accounted for 
using a process called imputation.

The most familiar phenotypes are those related 
directly to cow productivity, such as milk, butterfat, 
and protein yields. In typical milk recording programs, 
those yields are recorded on a monthly basis under the 
supervision of a technician using certified meters to en-
sure accurate observations. Milk samples taken during 
the test are sent to a laboratory for measurement of 
fat and protein contents and somatic cell score. The 
test-day milk yield and composition information are 
then sent to a dairy records processing center, where 
the observations are adjusted to a mature-equivalent 
basis. Corrections are also applied to account for dif-
ferences in lactation length and milking frequency so 
that production records from animals in different en-
vironments are comparable. This is similar in principle 
to comparing feed properties on a dry matter basis. 
Finally, lactation yields are estimated from test-day 
observations using best prediction (VanRaden, 1997). 
Schmidt et al. (1988) cover these topics in much greater 
detail, including many worked examples.

The US Genetics Industry

The Council on Dairy Cattle Breeding (CDCB; 
https://www.uscdcb.com/) is responsible for receiving 
data and computing and delivering genetic evaluations 
for US dairy cattle, a role that it assumed from the 
Animal Improvement Program (AIP; http://aipl.

arsusda.gov/) of the USDA’s Agricultural Research 
Service in December 2015. The Council has 3 voting 
board members from each of the 4 major sectors of 
the dairy improvement industry. The Purebred Dairy 
Cattle Association (PDCA; http://www.purebred-
dairycattle.com/) represents the national dairy breed 
registries, such as the American Jersey Cattle Asso-
ciation and Holstein Association USA. The National 
Association of Animal Breeders (NAAB; http://www.
naab-css.org/) represents the individuals and organi-
zations that produce semen for use in AI. The dairy 
records processing centers (DRPC) receive data from 
farms and milk recording laboratories, use those data 
to provide herd management tools, and forward data 
to other organizations, such as CDCB and PDCA, on 
behalf of their customers. The national Dairy Herd 
Information Association (DHIA) represents all of the 
organizations involved in dairy production recording, 
including the DRPCs, maintains national standards 
for data recording, and certifies devices for use in milk 
recording programs. Other industry groups, such as 
genotyping laboratories, have nonvoting representation 
on the CDCB Board of Directors.

Evaluation Releases

Official genetic evaluations are released 3 times each 
year (April, August, and December). In addition to 
providing authoritative genomic PTA for all animals 
evaluated in the United States, these releases include 
information from the multiple-trait across-country 
evaluations computed by the International Bull Evalu-
ation Service (Interbull; Uppsala, Sweden). Additional 
information, such as animal rankings for the lifetime 
net merit, cheese merit, fluid merit, and grazing merit 
indices (VanRaden and Cole, 2014), are provided when 
new official releases are published. Monthly genomic 
evaluations for young bulls are provided to the organi-
zation that nominated each animal for genotyping, and 
evaluations for females are sent to the respective breed 
associations. These evaluations include genomic PTA, 
reliabilities, and genomic inbreeding values. Recently 
received genotypes are processed each week to generate 
approximate genomic evaluations for new animals, but 
those releases include only approximated reliabilities 
and genomic inbreeding because of computational limi-
tations. Animals with genotypes that became usable 
since the previous weekly evaluation (e.g., because of 
corrected pedigrees) also receive weekly evaluations. 
The goal of this release schedule is to provide animal 
owners with accurate information for decision making 
as quickly as possible.
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SELECTION FOR INCREASED PRODUCTION

Response to Selection

The production of milk, fat, and protein by cows in 
the US dairy herd has increased dramatically in the past 
75 years. During this time, the number of cows in the 
national herd has decreased from 23.67 million in 1940 
to 9.26 million in 2014, whereas average annual milk 
yield has increased from 2,097 to 10,092 kg over the 
same time period (Figure 2a,b). The average Holstein 
in 2014 produced almost 5 times as much milk as cows 
in 1940, and much of this improvement in productivity 
is due to genetic selection. The genetic improvement for 
milk yield averaged 65.9 kg per year between 1960 and 
2013, accounting for roughly half of the total improve-
ment in milk yield observed over the same period. Simi-
larly, genetic improvement for fat yield averaged 2.3 kg 
per year from 1960 to 2013, whereas that for protein 
was 2.1 kg per year between 1970 and 2013. The rate 
of genetic improvement has remained similar for cows 
and bulls. Although the emphasis placed on milk yield 
in selection indices has decreased over time [from 52% 
in the 1977 PD$ (Predicted Difference Dollars) index 
to 1% in 2014 NM$], milk volume remains important 
in some markets (Florida and Southeast marketing 
areas) and the emphasis on milk solids has remained 
largely consistent (48% in PD$ and 42% in NM$). Even 
though milk receives relatively little emphasis in NM$, 
genetic merit for volume continues to increase due to its 
correlations with the other traits in the index (Table 2).

The CDCB publishes 4 selection indices to account 
for differences in how farmer are paid for their milk, 
fat, and protein (VanRaden and Cole, 2014). The net 
merit index (NM$) is based on the average value of 

Figure 2. The number of cows in the US national dairy herd 
(a) and the average milk yield per cow per year (b) between 1940 
and 2014. Source: Milk Production, Disposition, and Income Annual 
Summary (http://usda.mannlib.cornell.edu/MannUsda/viewDocu-
mentInfo.do?documentID=1105) .

Table 2. Correlations of predicted transmitting abilities (PTA) for individual traits in the lifetime net merit (NM$), cheese merit (CM$), fluid 
merit (FM$), and grazing merit (GM$) indices with the overall index, and the expected genetic response of those traits to selection on the index 
per year and decade1

Trait

Correlation of PTA with index

 

Expected genetic progress from NM$

2014 
NM$

2014 
CM$

2014 
FM$

2014 
GM$

PTA  
change/year

Breeding value 
change/decade

Protein yield 0.62 0.60 0.64 0.56 4.7 94
Fat yield 0.70 0.69 0.69 0.65 7.2 144
Milk yield 0.46 0.38 0.62 0.39 134 2,679
Productive life 0.68 0.68 0.64 0.70 0.64 13
Somatic cell score −0.44 −0.46 −0.36 −0.43 −0.04 −0.75
Udder composite 0.09 0.09 0.08 0.11 0.04 0.75
Feet/legs composite 0.11 0.11 0.09 0.11 0.05 1.04
Body size composite −0.20 −0.20 −0.20 −0.19 −0.09 −1.80
Daughter pregnancy rate 0.35 0.37 0.29 0.49 0.22 4.4
Heifer conception rate 0.15 0.14 0.15 0.23 0.10 2.0
Cow conception rate 0.34 0.35 0.31 0.48 0.34 6.7
Calving ability dollars2 0.37 0.36 0.36 0.41 2.8 57
1Data from VanRaden and Cole (2014; http://aipl.arsusda.gov/reference/nmcalc-2014.htm).
2Calving ability dollars is a weighted average of sire and daughter calving ease and stillbirth.
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milk and components across marketing orders, but the 
fluid merit (FM$) and cheese merit (CM$) indices 
provide tools for farmers whose milk is used principally 
for bottling or cheese manufacturing, respectively. The 
grazing merit index is useful for pasture-based dairies 
who often want greater emphasis on fertility in the bulls 
they use. Purebred dairy cattle associations also have 
their own selection indices for ranking animals, such 
as Holstein Association’s Total Performance Index and 
the American Jersey Cattle Association’s Jersey Per-
formance Index. Rankings are generally similar across 
indices, but the top animals for each index sometimes 
differ, as shown in Table 3 for NM$, FM$, and CM$ 
(grazing merit is not included Table 3 because sorted 
bull lists are not currently published for that index). 
For example, 6 bulls appear in the top 10 for both NM$ 
and FM$, but they are ranked differently. Most of these 
sires are young bulls with genomic evaluations but no 
daughters. Before the introduction of genomics, semen 
was not offered for sale until a bull completed progeny 
testing, with the objective of obtaining performance 
data from about 100 milking daughters.

Genetic Lag

Cows on commercial dairies typically have lower ge-
netic merit than elite cows used to breed young sires 
and bull dams, and this difference is referred to as 
genetic lag. This lag is often easy to see when PTA for 
bulls and cows are plotted together, such as in Figure 
3, which shows the genetic trend for Holsteins born 
between 1957 and 2014. It seems intuitive to many 
people to conclude that routine genomic testing of all 
heifer calves would provide a one-time increase in aver-
age genetic merit but that the trend would not change. 
However, this is not true. The routine use of genomic 
testing provides better information than traditional 
PTA about an animal’s true genetic merit because it 
tracks the chromosomes actually inherited from each 
parent, rather than assuming that hypothetical “aver-
age” chromosomes were inherited. Genomic selection, 
as anticipated, is producing changes in the parameters 
in the breeder’s equation. The first major change was 
to the reliability term in the numerator of Equation 
[1] (VanRaden et al., 2009). García-Ruiz et al. (2016) 
also recently documented large changes in the selection 
intensity term in the numerator, particularly for lowly 
heritable traits such as fertility, and the generation in-
terval in the denominator of Equation [1]. This means 
that the slopes of the genetic trend lines are changing, 
as well as their heights, and that PTA for bulls and 
cows both are improving faster under genomic selection 
than traditional selection.
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Selection for Low-Heritability Traits

The total merit genetic indices used for ranking ani-
mals in most countries have evolved substantially over 
time (Egger-Danner et al., 2015). Selection objectives 
originally focused on yield and conformation traits, 
which have relatively large heritabilities, meaning that 
a substantial amount of the variation between animals 
can be attributed to genetic differences among animals. 
However, emphasis is increasingly being placed on low-
heritability traits, particularly those related to animal 
health and fitness. Genetic progress is generally slower 
for low-heritability traits but can still be substantial 
when genomic evaluations can be used to reliably 
identify the animals in the population with the best 
genetic merit for those traits. In traditional progeny 
test programs, hundreds of daughter records are needed 
to obtain breeding values with high reliabilities, but 
genomic evaluations can provide similar accuracy based 
only on the genotype.

Genetic Diversity

Although genetic selection is a very powerful tool for 
changing populations, it is not without pitfalls. One of 
the most important of these is genetic variability. In 
any population of a limited size, even one including sev-
eral million animals, there is a loss of genetic diversity 
over time. This is most commonly measured using the 
coefficient of inbreeding, which is the probability that 2 
alleles are identical because they originated in the same 
ancestor (e.g., Young and Seykora, 1996). The coef-
ficient of inbreeding has increased by 0.11% per year 
since 1960 in US Holsteins (Figure 4) and currently 
averages 6.42, 7.04, 7.40, 6.57, 7.54, and 6.02% for US 
Ayrshire, Brown Swiss, Guernsey, Holstein, Jersey, and 

Milking Shorthorn cows born in 2015. The negative ef-
fects of inbreeding are most pronounced for health and 
fitness traits, but effects are undesirable for most traits, 
including production traits (Table 4). For example, a 
1% increase in inbreeding is associated with decreases 
of 28.88, 1.07, and 0.85 kg in PTA for milk, fat, and 
protein production, respectively.

Another consequence of a decrease in genetic diver-
sity is an increase in the rate at which recessive disor-
ders are discovered in the population. This may appear 
at first to be undesirable, but if a recessive disorder is 
known, it can be tracked and managed in the popula-
tion. If a popular bull is a carrier of a harmful reces-
sive, then harmful alleles can spread rapidly through 
the population, as was the case with bovine leuko-
cyte adhesion deficiency (BLAD), which was traced 
back to the popular bull Osborndale Ivanhoe (HOU-
SA000001189870). Ivanhoe sired 10,194 daughters and 
267,158 granddaughters, and 137 of his sons and 934 
of his grandsons entered AI service. Any recessive that 
results in the death of calves following their birth and 

Figure 3. The change in average predicted transmitting ability 
(PTA) for milk yield of US Holstein bulls (red line) and cows (blue 
line) between 1957 and 2014. Source: Trend in Milk BV for Holstein or 
Red & White Calculated April 2016 (https://www.uscdcb.com/eval/
summary/trend.cfm).

Figure 4. The change in inbreeding in the US Holstein popula-
tion between 1960 and 2012. Source: Trend in Inbreeding Coefficients 
of Cows for Holstein or Red & White Calculated December 2015 
(https://www.uscdcb.com/eval/summary/inbrd.cfm).

Table 4. Changes in predicted transmitting abilities associated with 
a 1% increase in inbreeding for several traits included in the lifetime 
net merit economic index1

Trait Effect

Milk yield (kg) −28.88
Fat yield (kg) −1.07
Protein yield (kg) −0.85
Somatic cell score 0.00
Productive life (mo) −0.27
Daughter pregnancy rate (%) −0.13
Heifer conception rate (%) −0.12
Cow conception rate (%) −0.16
1Data from December 2015 Across Breed Base Adjustment Parameters 
(https://www.uscdcb.com/eval/summary/Bmean_bases_het.cfm).
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early rearing period is particularly problematic because 
the economic impact is much greater than that of reces-
sives that cause early embryonic loss. Recessives that 
cause loss later in gestation are also expensive if the 
cow is culled or the next lactation delayed. The CDCB 
currently is using haplotype and SNP tests to track 25 
recessives, including several haplotypes that result in 
early embryonic loss (Cole et al., 2013).

Undesirable Correlations

Modern selection programs attempt to balance selec-
tion for many traits against one another to produce 
profitable cattle. This can be difficult when antagonistic 
correlations exist among traits in the selection objective. 
For example, the phenotypic and genetic correlations of 
milk with daughter pregnancy rate (DPR) are −0.10 
and −0.23, respectively, and fat and protein have un-
desirable correlations with fertility. These correlations 
imply that selection programs that place substantial 
emphasis on yield will select for poorer fertility (Pryce 
et al., 2004). It is possible to identify animals that have 
favorable PTA for both yield and fertility, which means 
that large populations have an advantage over smaller 
ones because the likelihood of identifying an individual 
that has desirable genetic merit for 2 unfavorably cor-
related traits is higher in the larger population.

SELECTION FOR EFFICIENCY GAINS

The dairy industry as a whole has become more 
efficient because the cost of maintaining the national 
cow herd has decreased with the decline in number of 
animals needed to meet the demand for dairy products. 
This increase in efficiency has been largely due to ge-
netic and management advances focused on increasing 
milk production. Although this has led to a dramatic 
increase in efficiency of dairy operations, strategies to 
more directly improve feed efficiency (the efficiency 
with which individual cows convert feed to milk) may 
be necessary to maintain improvements in production 
efficiency (and profitability) in the future (VandeHaar 
et al., 2012).

Feed costs of lactating cows represent a significant 
portion of input costs for dairies. Although the ability 
to select cows capable of maintaining milk production 
with reduced feed intake requirements would be ben-
eficial, feed intake has not been included in traditional 
genetic evaluation programs because of a lack of indi-
vidual cow feed intake data. Although research herds 
often monitor feed intake on individual cows, this is a 
time- and labor-intensive endeavor that often relies on 
the use of specialized equipment. Thus, PTA for feed 

intake and related traits have not yet been computed 
on a regular basis in the United States.

Several AI and breed organizations have recently 
developed selection indices to describe production ef-
ficiency. Although these indices differ across organiza-
tions, in general production traits are rewarded whereas 
expected feed intake is penalized. In the absence of ac-
tual feed intake data, these indices assume feed intake 
is proportional to the amount of feed needed to support 
milk production and maintenance requirements, and 
maintenance requirements are estimated from the body 
size composite score. Additional traits are included in 
the efficiency index by some organizations to further 
reward cows with the ability to be efficient produc-
ers across multiple lactations. These indices currently 
provide a tool to producers wanting to include produc-
tion efficiency in their selection goals. However, they 
are limited by assumptions that intake requirements 
to support a given level of milk production, and intake 
requirements to support a given body size are the same 
across all cows.

To more directly address genetic differences among 
cows for feed efficiency, a multi-institutional project 
including international collaboration began in 2011. A 
goal of this federally funded project is to measure feed 
intake on thousands of Holstein cows to investigate the 
genetic regulation of feed intake and efficiency. These 
phenotypic data, along with genotypes from the same 
animals, provide the predictor population data needed 
for genomic prediction of PTA for feed intake and effi-
ciency traits. In this way, the power of genomic predic-
tion is combined with phenotypic data from research 
herds to estimate the genetic merit of animals for feed 
efficiency based on their genotypic profiles. It is antici-
pated that PTA for feed intake and efficiency traits will 
be available in the United States in the near future. 
Other traits, such as those related to cow longevity, are 
also related to cow efficiency and will be discussed in 
other chapters.

CONCLUSIONS, IMPLICATIONS, AND THE FUTURE

The rapid acceptance of new genetic and reproduc-
tive technologies by the dairy industry has been essen-
tial to the success of modern genetic selection programs 
(e.g., Nicholas, 1996). The most notable example of this 
is the widespread adoption of AI using frozen semen 
in the 1950s, which allowed genetically superior bulls 
to sire many more daughters than was possible using 
natural service. In vitro fertilization and embryo trans-
fer, ovulation synchronization and timed AI, and sexed 
semen are also used frequently to increase the rate of 
genetic progress. The recent rapid adoption of genomic 
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selection (Wiggans et al., 2011) demonstrates the con-
tinued interest in technologies that support faster rates 
of genetic improvement, but a continued willingness 
to adopt new technologies is essential to ensure that 
US dairy producers remain competitive as the global 
marketplace changes.

Production efficiency will continue to grow in im-
portance as demand for animal protein and competi-
tion for resources such as feed and water increases. 
Predictions from the Food and Agriculture Organiza-
tion of the United Nations suggest that overall food 
production must be increased by 70% between 2005 
and 2050 to meet the nutritional needs of a human 
population of 9.1 billion (FAO, 2009), which includes 
a doubling of agricultural production in developing 
countries. This will require that all aspects of livestock 
production systems become more efficient. The use of 
genomic selection has resulted in a doubling of the rate 
of genetic gain in the US dairy cattle population, but 
that alone is not sufficient to meet future demands for 
animal-based food in human diets. It also is necessary 
that cows be provided with the environment to support 
such levels of productivity, which will be challenging as 
global climate change puts new pressure on feed and 
water resources and transportation costs rise. The most 
efficient dairy animal for the future may look very dif-
ferent from today’s elite cow.
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